人脸识别简介人脸识别怎么做到的人脸识别的特点
什么是人脸识别?人脸识别功能怎么出现的?人脸识别有什么技术优势和特点呢?人脸识别的实际应用有哪些?接下来小编来给大家详细介绍下关于人脸识别这一功能。
人脸识别简介
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
人脸识别怎么出现的?
人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。
人脸识别的工作方法
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
人脸图像预处理
人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸图像特征提取
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
人脸图像匹配与识别
人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
人脸识别有哪些技术特点
传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们熟悉的识别方式,已有30多年的研发历史。但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但这两种技术还远不成熟,识别效果不尽人意。
迅速发展起来的一种解决方案是基于主动近红外图像的多光源人脸识别技术。它可以克服光线变化的影响,已经取得了卓越的识别性能,在精度、稳定性和速度方面的整体系统性能超过三维图像人脸识别。这项技术在近两三年发展迅速,使人脸识别技术逐渐走向实用化。
人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提,与其它类型的生物识别比较人脸识别具有如下特点:
非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;
非接触性:用户不需要和设备直接接触就能获取人脸图像;
并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;
除此之外,还符合视觉特性:“以貌识人”的特性,以及操作简单、结果直观、隐蔽性好等特点。
人脸识别的技术难关
人脸识别被认为是生物特征识别领域甚至人工智能领域最困难的研究课题之一。人脸识别的困难主要是人脸作为生物特征的特点所带来的。
相似性不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。
易变性
人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件(例如白天和夜晚,室内和室外等)、人脸的很多遮盖物(例如口罩、墨镜、头发、胡须等)、年龄等多方面因素的影响。
在人脸识别中,第一类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第一类变化为类间变化(inter-class difference),而称第二类变化为类内变化(intra-class difference)。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。
人脸识别的主要应用用途
人脸识别的用途现在越来越广,各行各业都在尝试用人脸识别提升客户体验、优化服务水平,不过归根结底主要有两大类:人脸身份识别和人脸身份认证。二者表明看起来比较接近,但其技术原理并不相同:人脸身份识别是从一堆人里识别出你是谁,人脸身份认证是确认你是不是你自己本人,比较典型的应用如下:
1、人脸身份识别
1)VIP人脸识别顾名思义,可以自动在人群中捕捉VIP客户,并识别出其身份,同时可以语音欢迎并通过后台通知工作人员;
2)人脸黑名单可以在重点通道设置人脸黑名单,自动识别重点嫌疑人等,一旦发现即可自动报警;
2、人脸身份认证
1)金融行业应用比较多,包括刷脸登录、远程人脸开户、自助人脸开卡等等。
2)社保行业比较典型的就是远程资格认证,以往为了证明参保人员的生存状态,需要参保人员实地进行资格认证,这样年龄大出行不便、距离远的异地参保人员都特别不方便,而人脸识别则可以通过远程进行人脸身份认证
3)教育行业主要是高考、成人考试、人事考试等,2016年高考教育部已经正式发布公告需要借助于指纹识别、人脸识别等生物识别技术确认高考考生身份,这样可以确保人证合一,保证考试的公平性
4)娱乐化应用比较多也比较常见,比如人脸相似度、明星脸等等。
人脸识别产品已广泛应用于金融、司法、军队、公安、边检、政府、航天、电力、工厂、教育、医疗及众多企事业单位等领域。随着技术的进一步成熟和社会认同度的提高,人脸识别技术将应用在更多的领域。
1、企业、住宅安全和管理。如人脸识别门禁考勤系统,人脸识别防盗门等。
2、电子护照及身份证。中国的电子护照计划公安部一所正在加紧规划和实施。
3、公安、司法和刑侦。如利用人脸识别系统和网络,在全国范围内搜捕逃犯。
人脸是别的主要产品
数码相机
人脸自动对焦和笑脸快门技术:首先是面部捕捉。它根据人的头部的部位进行判定,首先确定头部,然后判断眼睛和嘴巴等头部特征,通过特征库的比对,确认是人面部,完成面部捕捉。然后以人脸为焦点进行自动对焦,可以大大的提升拍出照片的清晰度。笑脸快门技术就是在人脸识别的基础上,完成了面部捕捉,然后开始判断嘴的上弯程度和眼的下弯程度,来判断是不是笑了。以上所有的捕捉和比较都是在对比特征库的情况下完成的,所以特征库是基础,里面有各种典型的面部和笑脸特征数据。
门禁系统
受安全保护的地区可以通过人脸识别辨识试图进入者的身份。人脸识别系统可用于企业、住宅安全和管理。如人脸识别门禁考勤系统,人脸识别防盗门等。
身份辨识
可在机场、体育场、超级市场等公共场所对人群进行监视,例如在机场安装监视系统以防止恐怖分子登机。如银行的自动提款机,用户卡片和密码被盗,就会被他人冒取现金。同时应用人脸识别就会避免这种情况的发生。通过查询目标人像数据寻找数据库中是否存在重点人口基本信息。例如在机场或车站安装系统以抓捕在逃案犯。
网络应用
利用人脸识别辅助信用卡网络支付,以防止非信用卡的拥有者使用信用卡等。如计算机登录、电子政务和电子商务。在电子商务中交易全部在网上完成,电子政务中的很多审批流程也都搬到了网上。而当前,交易或者审批的授权都是靠密码来实现。如果密码被盗,就无法保证安全。如果使用生物特征,就可以做到当事人在网上的数字身份和真实身份统一。从而大大增加电子商务和电子政务系统的可靠性。
古代的酒桌文化与现代有什么不同
延伸阅读:
暂无内容!
评论列表 (0条):
加载更多评论 Loading...